

Electroactive Polymer Transducer INNOVATIVE SOLUTION FOR NOVEL ACTUATION TECHNOLOGY

WORKING PRINCIPLE

- Electromechanical transducer made of soft elastic polymer
- Electrical power converted to mechanical motion by elastic deformation
- Reliable electrostatic working principle for multipurpose and efficient operation

A VERSATILE ACTUATION TECHNOLOGY

- EAPs can be used as sensors and actuators
- Flexible EAP portfolio for tailored applications
- Lab-scale production established
- Automated Industrial pilot production by 2024

10N

Max. actuation force

5-7 %

Max. contraction

Actuation time

below 2ms

Actuation frequency

Temperature resistance

APPLICATIONS

- Valves
- 2. Haptic feedback interfaces
- 3. Locks
- 4. Shutters
- 5. Switches
- 6. Pumps and dosing systems

EAPs IN AUTOMOTIVE

TECHNOLOGY BENEFITS

- Zero energy consumption when position holding
- Proportional positioning
- Simultaneous actuation and sensing
- Macro-scale strokes
- Noiseless actuation
- Compact, lightweight and low-cost devices
- Maintenance free for clean environment

CONTACT US FOR FURTHER INFORMATION

fabio.becoalbuquerque@datwyler.com

